Digital Library on Green Mobility


Multimodal Choice Model for E-mobility Scenarios

Publication Year: 2019

Author(s): Ferrara M, Liberto C, Nigro M, Trojani M, Valenti G


This paper focuses on the definition, calibration and testing of a simulation model that is able to represent multimodal choice behaviours for electric vehicles. Taking into account the interchange between public transport and electric private mobility, the model estimates the parking demand at the Park & Ride sites equipped with charging stations. The model is based on a data-driven approach, in which mainly Floating Car Data and open data of public transport have derived the explanatory variables. Specifically, a machine learning method (Random Forest) has been used to calibrate and test the model in the real case of the metropolitan area of Rome (Italy). The authors first perform a stability analysis, letting the parameters of the model vary. The authors then carry out a sensitivity analysis on the variables that can affect the user propensity to adopt the Park & Ride. Finally, the authors profile and test an incentive policy to boost the choice of Park & Ride. Results suggest that the model succeeds in simulating Park & Ride by electric vehicles and, therefore, it can be extremely valuable for planning financial support to the multimodal travel choice and forecasting vehicle-to-grid scenarios.

Source of Publication: Transportation Research Procedia

Vol/Issue: 37: 409-416

DOI No.: DOI: 10.1016/j.trpro.2018.12.210

Country: Italy

Publisher/Organisation: Elsevier B.V.

Rights: CC BY-NC-ND license (


Theme: Business Models | Subtheme: Financing

Related Documents

Research Papers/Articles


Over the past few years, registration figures of plug-in electric vehicles have increased rapi... Read More

Research Papers/Articles


This paper introduces user business models to the literature on ecopreneurship and explores th... Read More