On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

of the Federal Republic of Germany

Deloitte.

Battery Ecosystem: A Global Overview, Gap Analysis in Indian context, and Way Forward for Ecosystem Development

Workshop presentation 13 May 2022

CONTENTS

- 1 Background
- **2** Brief description of the study
- **3** Approach to the assignment
- 4 Key study findings
 - EV Battery Technology
 - EV Battery Standards
 - EV Policy and Regulatory Landscape
 - EV Battery Manufacturing
 - Battery Swapping & Financial Analysis
 - Battery Recycling & Financial Analysis
 - Battery Reuse

Climate concern, COP26, and India's net-zero commitment...

Climate change – a growing global challenge...

- 19 of the top 20 warmest years on the planet have occurred in the 21st century itself
- ★ 2015: COP15 first time every country entered into a legally binding commitment to reduce emission and to limit global warming to well below 2 degrees and aim for 1.5 degrees
- ★ 2021: COP26 secured near-global net zero, NDCs from 153 countries with India being one of them

India's "Panchamrita" to counter global warming and climate change...

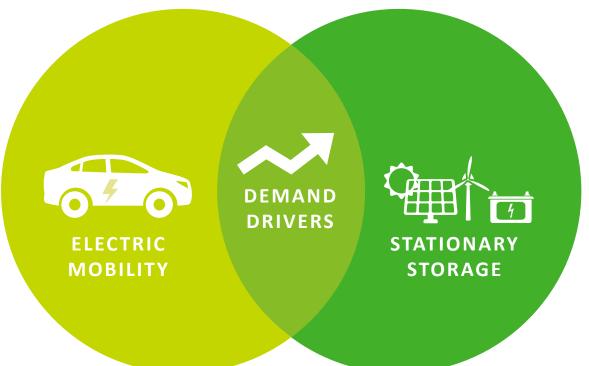
Reaching **non-fossil energy** capacity of 500 gigawatt by 2030

Meeting 50 per cent of energy requirements from **renewable energy** by 2030 Reducing projected carbon emission by one billion tonnes by 2030

Reducing **economy's carbon intensity** by less than 45 percent by 2030

"Glaciers are melting, sea levels are rising, cloud forests are dying, and wildlife is scrambling to keep pace." - Nat Geo

Achieving **net zero** by 2070


Battery technology – Driving decarbonization and global energy transition

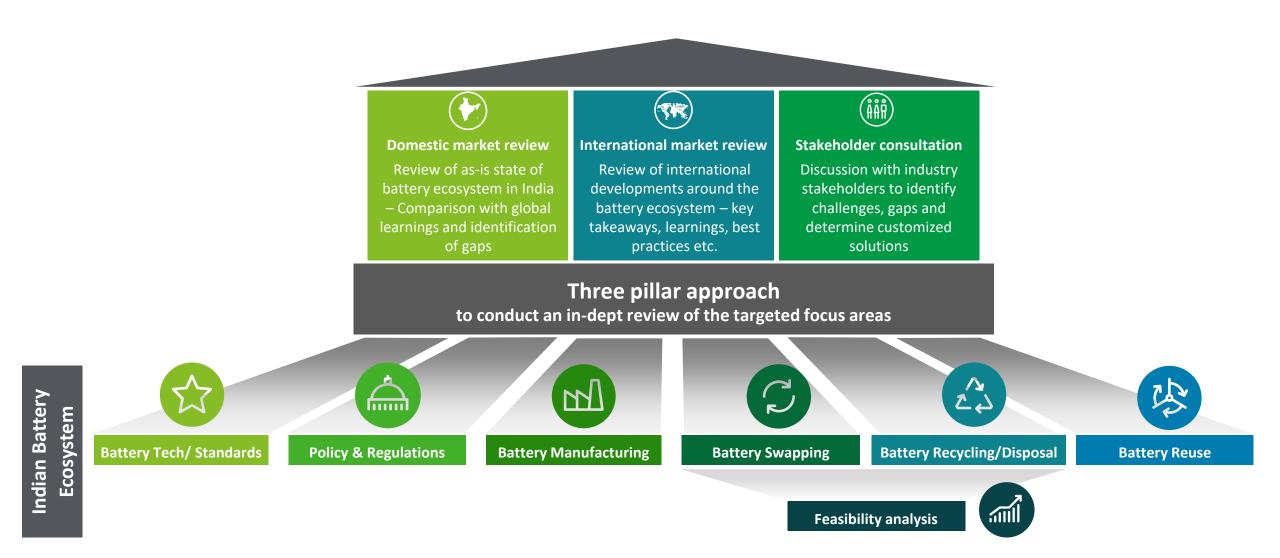
...and the characteristics of batteries makes them the best fit to use in EVs and provide grid support from intermittent RE

- Transportation industry has huge carbon footprint and there is a dire need to replace polluting ICE vehicles
- High energy and power density of batteries makes them the most ideal candidate to replace ICE vehicles
- Renewables have been adopted worldwide to replace polluting thermal power plants
- However, power from RE plants is intermittent and there is need for a solution to **firm the RE power**
- Battery storage acts as such flexibility solution

Battery storage industry has grown at **~25% CAGR** in the last decade owing to two major demand drivers:

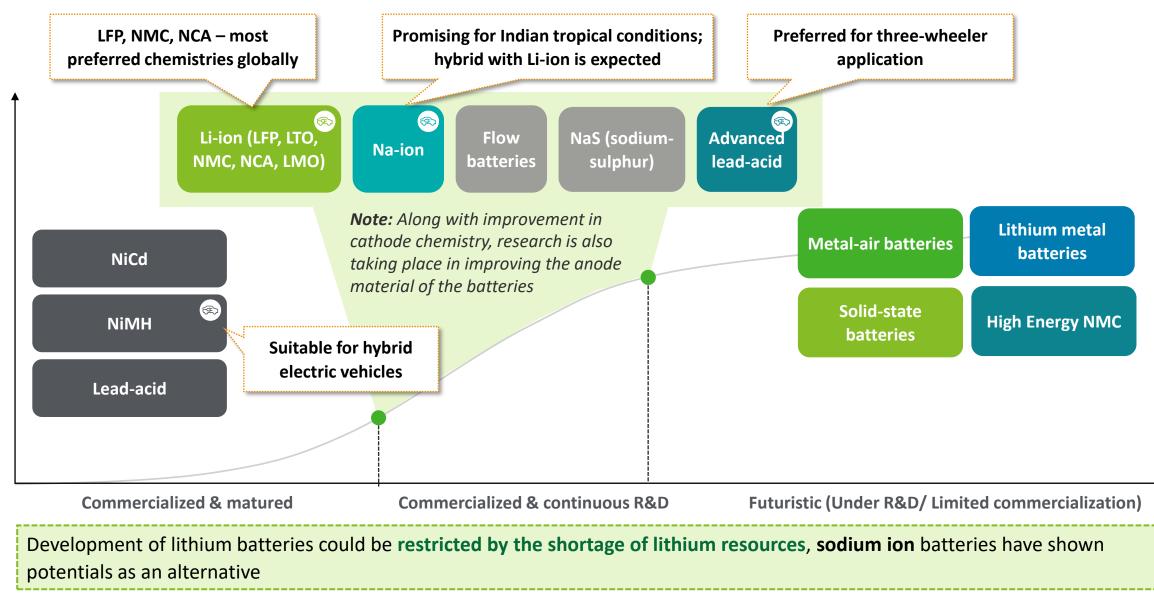
With India aiming ambitious net-zero goals, creating an enabling ecosystem for batteries becomes pivotal

Brief description of the study around traction batteries

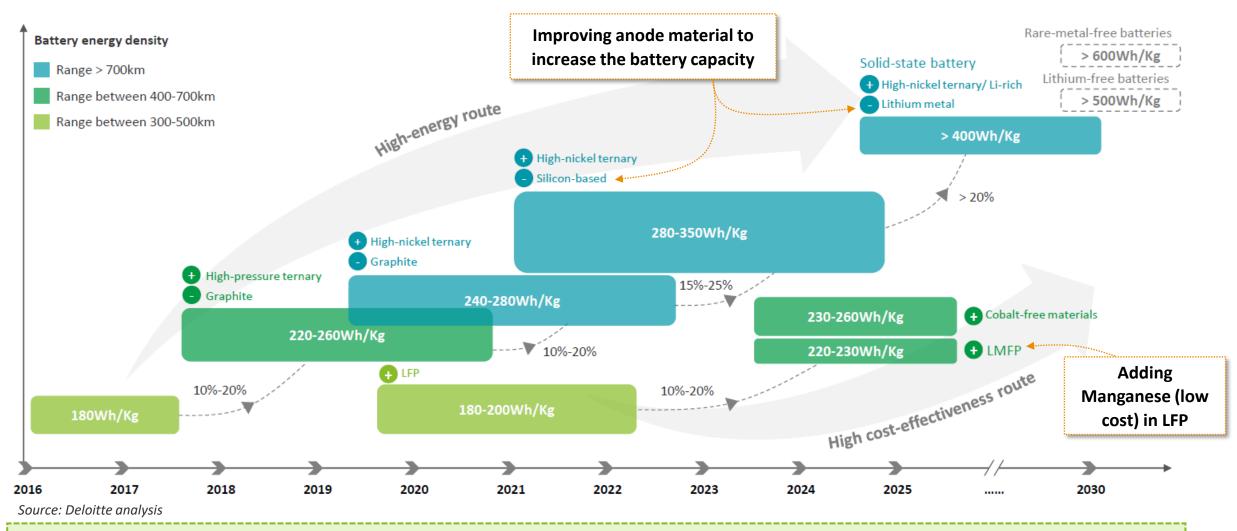

The study aims to provide a global overview and perform gap analysis in the Indian context and suggest a way forward for battery ecosystem development looking into:

- Value chain for traction batteries and current scenario of sourcing, manufacturing, assembling, reuse, and recycling in India and globally
- Battery standards in India, key gaps and ways to bridge them
- Policies, Regulatory, technical and logistical barriers to the battery swapping, disposal, recycling and reuse
- ✓ Financial and economic analysis of battery swapping and battery recycling businesses

This study is <u>unique</u> as it focuses on the complete battery ecosystem



Approach to the assignment



Key study findings Battery Technology

Lithium-ion is here to stay in the Indian EV market – for at least this decade...

Energy density improvement in Li-ion chemistries will remain the priority for global OEMs...

Given India's tropical conditions, chemistries with **high thermal runaway** temperature such as **LFP** are more likely get adopted in the Indian EV industry owing to safety concerns

@2022 Deloitte Touche Tohmatsu India LLP.

Battery Ecosystem: A Global Overview, Gap Analysis in Indian context, and Way Forward for Ecosystem Development – Workshop 9

Key study findings Battery Standards

Standards & organizations covered in the study

Organizations: International Electrotechnical Commission		Focus area
		Standards
Electric Vehicles	Battery Technology	General
	Lead Acid	Safety
	Lithium-ion	Performance
	Lithium-ion Ag Image: Second state Image: Second state Image: Second state	Transportation
		Recycling
	Nickel Cadmium	Abuse Testing
		Communication

Battery Ecosystem: A Global Overview, Gap Analysis in Indian context, and Way Forward for Ecosystem Development – Workshop 11

While India has notified domestic versions of the international battery standards, it currently completely lacks in covering the recycling activity of batteries

		Standards			
Chemistry	Performance and Lifecycle	Safety	Transportation	Recycling	
Lead Acid					
Lithium-ion			\mathbf{X}	\mathbf{x}	
Nickel Metal Hydride				\mathbf{x}	
Nickel Cadmium				$\mathbf{\otimes}$	

Mapping Indian standards with global:

Even though Indian standards are present for certain aspects of the **battery ecosystem**, **testing parameters**, **additional tests** could be included in existing standards apart from developing newer standards for comprehensively capturing the battery ecosystem.

@2022 Deloitte Touche Tohmatsu India LLP.

Battery Ecosystem: A Global Overview, Gap Analysis in Indian context, and Way Forward for Ecosystem Development – Workshop 12

Key recommendations (1/2)

• •	ls that can be referred for the	ls to develop its own standards for same are:	battery recycling.
ead acid:	Lithium-ion:	NIMH:	NiCd:
EN 61429:1996, IEC 61429:1995, J3071, J2984	• J3071, J2984	 EN 61429:1996, IEC 61429:1995, J3071, J2984 	 EN 61429:1996, IEC 61429:1995, J3071, J2984

For lead-acid and Ni chemistries, measurement of rated capacity should be done at varying levels of charge / discharge rates to determine performance under different operating conditions

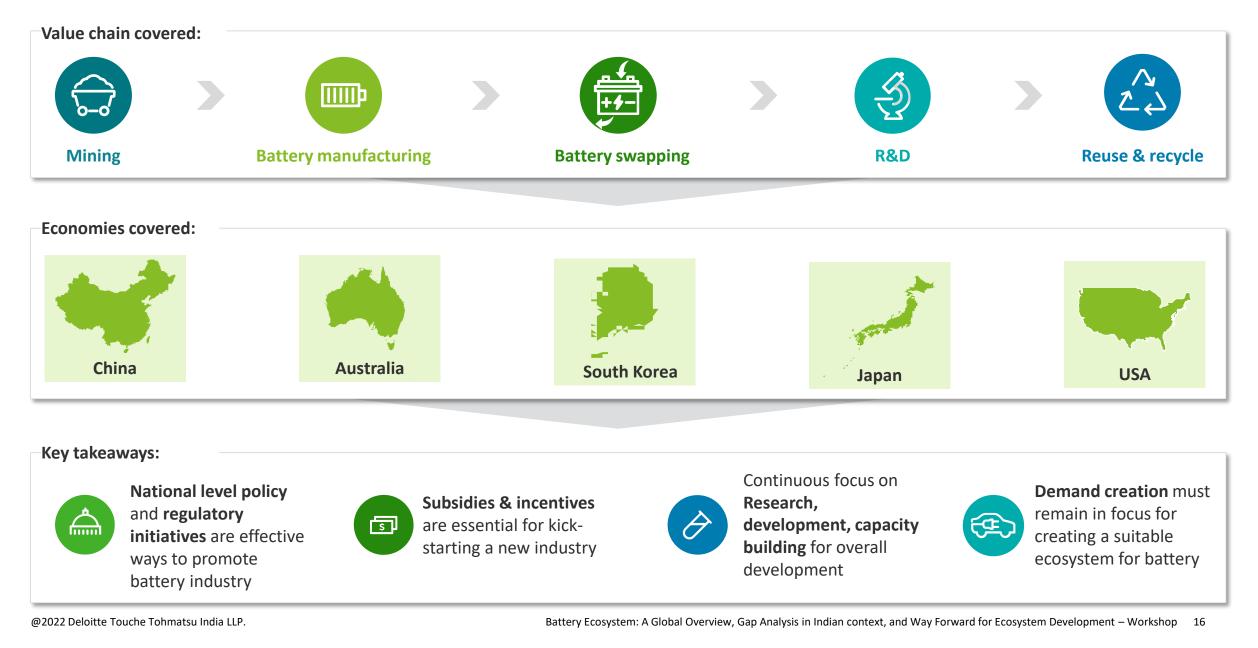
Lead acid and Ni chemistries:

• SAE standards

For Li-ion batteries, Indian standards lack mechanical tests such as drop, penetration and saltwater immersion which can be taken from IEC 62660-2

Key recommendations (2/2)

For Li-ion, aspects such as thermal shock test, thermal runaway, thermal cycling, dewing, emissions, salt spray, and flammability could be referred from UL and SAE standards


QC/T standards include requirements for components viz. **vehicle charging battery enclosure** and **swapping battery enclosure** which can be adopted in India to promote uptake of battery swapping business

Battery should be able to deliver a proper **cranking power** is in case the vehicle is idle for a long time. This is applicable for HEVs. Reference from the same can be taken from IEC and ISO standards.

Key study findings Policy and Regulatory Landscape

Approach for global study & key findings

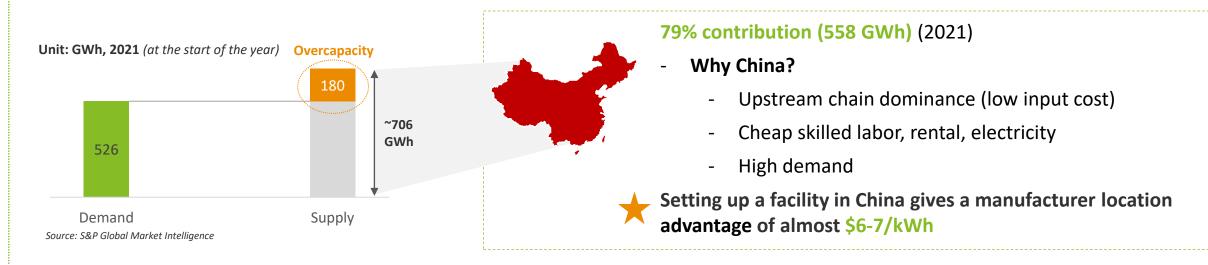
Notable measures adopted globally to promote battery ecosystem

USA released a **National blueprint for lithium batteries** which provides for a **ten-year plan** to guide investments in the domestic **lithium-ion supply chain**. (*National blueprint for lithium batteries 2021–2030, 2021*)

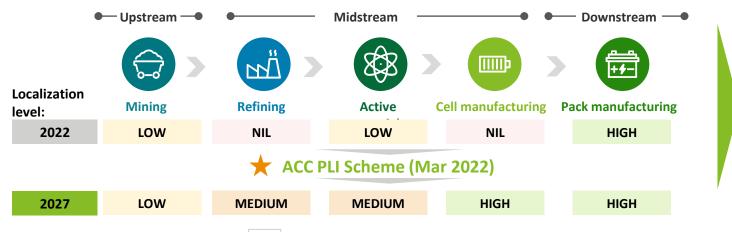
China notified the national standards for battery swap safety requirements for EVs to improve the level of safety during battery swapping. (National standard for battery swap safety requirements for EVs, 2021)

South Korea has launched a government led initiative to commercialize lithium sulfur, solid state & lithium metal batteries will be commercialized by 2025, 2027 and 2028 respectively (*K-Battery Strategy, 2021*)

X

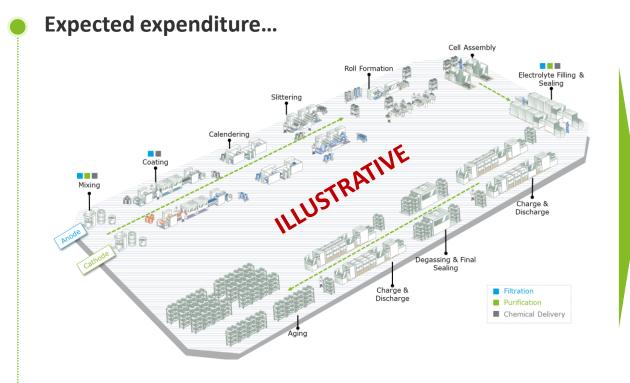

Australia has offered recyclers a rebate per kg to collect, sort and process end-of-life batteries. Major battery manufacturers were also encouraged to participate in the scheme to improve the rate of recycling (Battery Stewardship Scheme, 2019)

Key study findings Battery Manufacturing


Battery manufacturing – Global & Indian market overview

Global market overview

Aggressive expansion in recent years has currently led to a situation of oversupply in the global Li-ion battery industry...


India market overview – Present & Future

Key takeaways

- India could become an export hub for battery cells by 2027
- High upstream & midstream expansion could be witnessed in the next 5 years
- Business model shift from "global technology partner dependency" to "self or domestic reliance"

Setting up a cell manufacturing in India

Ca	pex	\ /	0	pex
	0 Cr per GWh capex)			– 800 Cr* al opex)
Plant & equipment	INR 900 – 1400 Cr/GWh		Power requirement	45-55 MUs/ GWh/ year
Building & surroundings	INR 60 – 80 Cr/GWh		Water requirement	7000-9000 liter/ GWh/ day
Land requirement	5-8 Acre/ GWh		Manpower requirement	750 nos. /GWh
		$/ \setminus$	* For 1 GWh	

Note: The capex and opex figures will vary based on technology transfer cost, battery chemistry, plant location etc.; the above figures are for a hybrid (LFP & NMC) manufacturing plant

Clearances required...

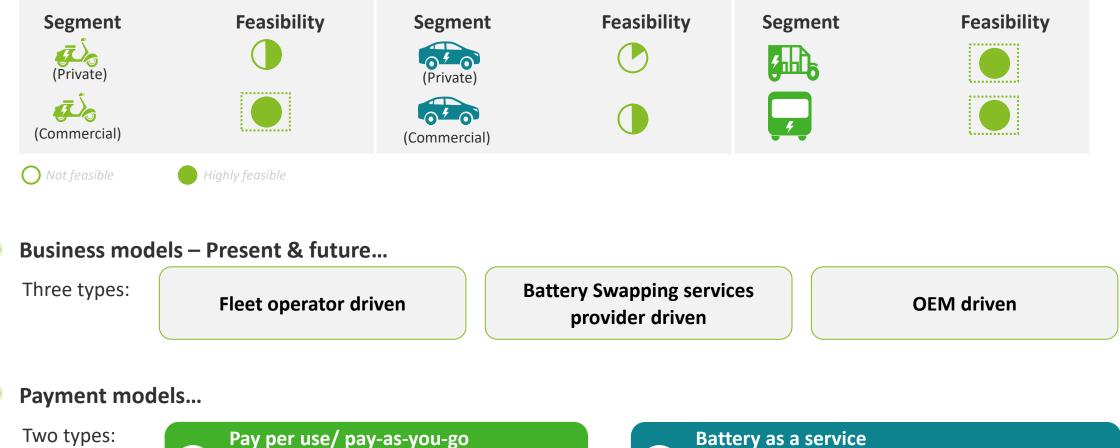
1 Environment and Forest Clearance

- Screening
- Scoping
- Public Consultation

2

Appraisal

Other Statutory Clearances and Approvals


- Permission for land use
- Water & Air Pollution Control Act NOC
- Import/ export code numbers
- Authorization for waste generation

Note: Comprehensive list of approvals/ clearances along with concerned agency is provided in the report

Key study findings Battery Swapping

Battery swapping in India – An overview

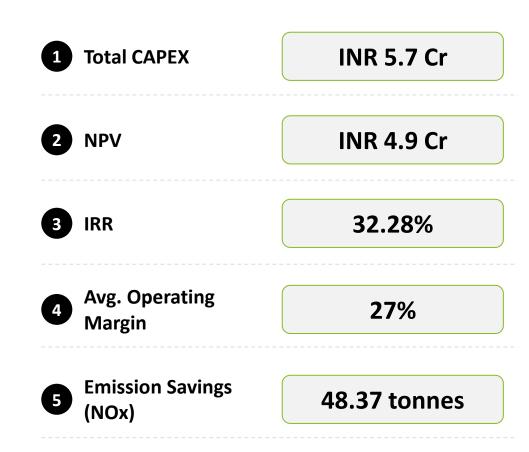
A time-saving alternative to charging but not feasible for all...

user pays for the energy charges corresponding to the battery capacity which is used for running

user signs up for a battery rental plan in which it pays monthly fees in return for access to a battery swapping on regular basis

=

Setting up a battery swapping station – Financial analysis output

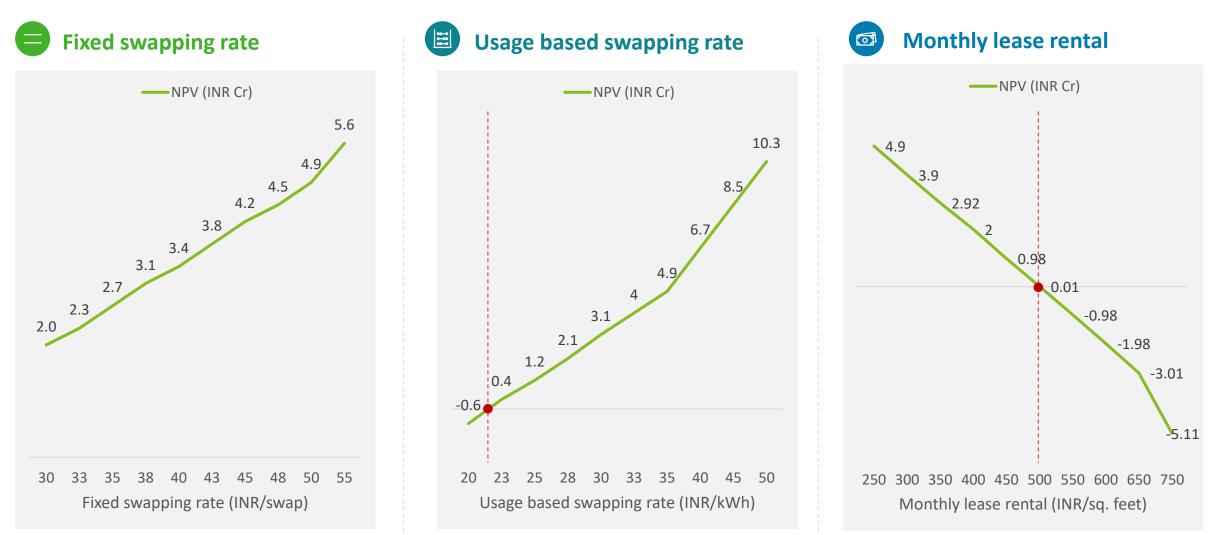

- **Key model inputs**
- The model was • developed for a swapping operator having **20 swapping** stations with 15 batteries in each swapping station
- The batteries are modular in nature to cater to both E-2Ws and E-3Ws (through stacking)

Users can either pay ٠ based on **usage** (INR/kWh) or a fixed rate per swap (INR/swap)

Note: All inputs are verified from market players @2022 Deloitte Touche Tohmatsu India LLP.

Particulars	🔊 Value
Batteries per user	1.5
Battery Size	1.5 kWh
Battery cost	INR 35,000
Investment per station	INR 9 lacs
Utilization (cycles per day)	4 (Y1) to ~12 (Y10)
Battery charging time	1.5 hours
Fixed swapping rate	INR 50/swap
Usage based swapping rate	INR 35/kWh
Area required per station	150 sq. feet
Manpower per station	2 nos.
	Dettem / Errenter

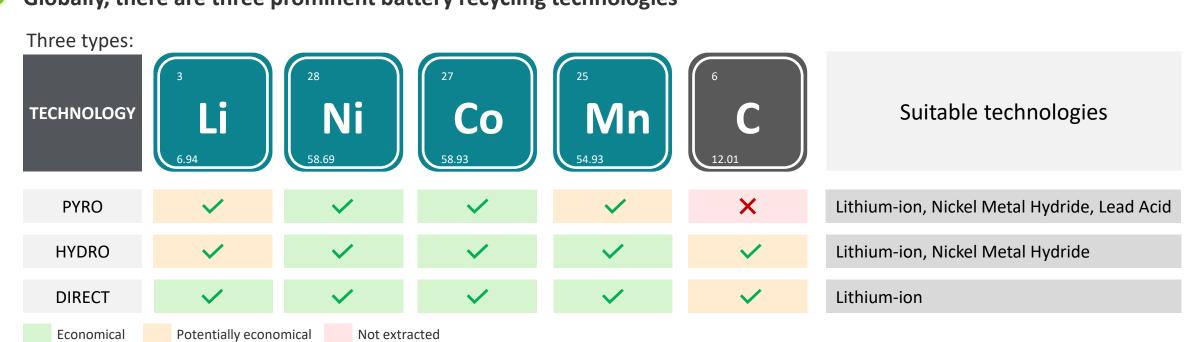
Key model outputs*



* Assuming 30% users opt for fixed swapping rate and remaining opt for usage basis swapping rate

Battery Ecosystem: A Global Overview, Gap Analysis in Indian context, and Way Forward for Ecosystem Development – Workshop 23

Sensitivity analysis of battery swapping stations


NPV vis-à-vis...

@2022 Deloitte Touche Tohmatsu India LLP.

Key study findings Battery Recycling

Recycling of Li-ion batteries – Technology overview

Globally, there are three prominent battery recycling technologies

Hydrometallurgy – Technology of choice

- Basis technology readiness, process complexity, recovered material quality & quantity, energy usage, toxic material containment, capital cost, and battery presorting requirements our study concluded that Hydrometallurgy is the best fit for recycling lithium-ion batteries which are the mainstay of the EV industry
- **Recyclers in India** are foraying with Hydrometallurgy as the technology of choice for recycling lithium-ion batteries

Setting up a battery recycling facility – Financial analysis output

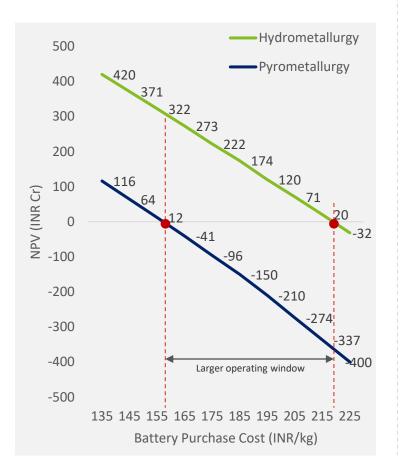
Key model inputs

- The model was developed for a 10,000 MTPA hydrometallurgical or pyrometallurgical processes
- Assumptions were collected through primary interactions and secondary research

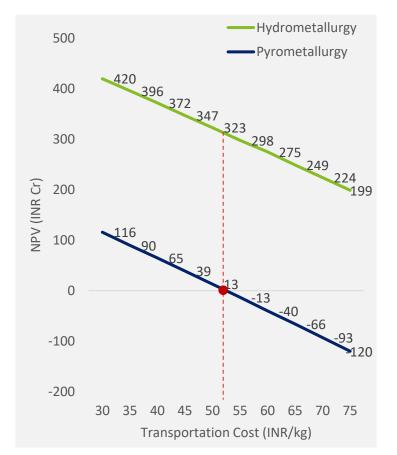
Particulars	HYDROMETALLURGY	
CAPEX*	INR 163 Cr	INR 285 Cr
Electricity Consumption	0.035 kWh/kg spent battery	1.3 kWh/kg spent battery
Transportation Cost	INR 30/kg spent battery	INR 30/kg spent battery
Battery purchase cost	INR 135/kg spent battery	INR 135/kg spent battery
Capacity Utilization	50% in 1 st year with YoY increase of 10% up to 95% from 6 th year onwards	50% in 1 st year with YoY increase of 10% up to 95% from 6 th year onwards

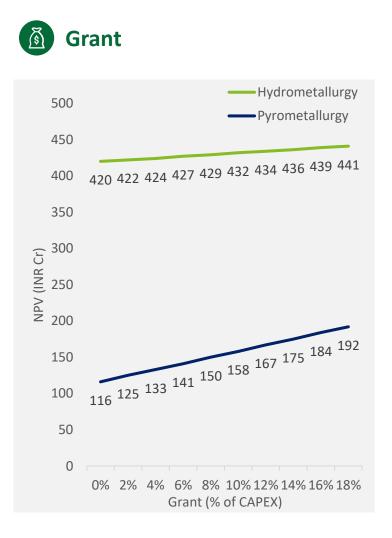
Note: * Excluding Land cost; #: Considering 0% grant

- Key model outputs[#]
- 1. Hydrometallurgy


1 NPV	INR 420 Cr
2 IRR	32.8%
3 Avg. Operating Margin	26.5%
4 Emission Savings (GHG CO2 eq.)	260.8 thousand tonnes
2. Pyrometallurgy	
1 NPV	INR 116 Cr
2 IRR	15.8%
3 Avg. Operating Margin	14.5%
4 Emission Savings (GHG CO2 eq.)	124.8 thousand tonnes

Battery Ecosystem: A Global Overview, Gap Analysis in Indian context, and Way Forward for Ecosystem Development – Workshop 27


Sensitivity analysis of battery recycling facility


NPV vis-à-vis...

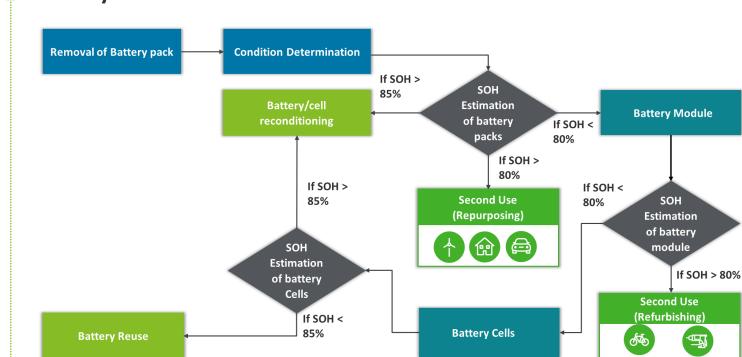
Battery Purchase Cost

Key recommendations

Encouraging design for recycling practices with battery manufacturers in close collaboration with recycling industry

Institutionalization of recovery rates from recycling processes in Battery Waste Management Rules; higher for matured technologies and lower for newer upcoming technologies

Development of battery reuse register for keeping track of batteries in circulation after their first life and ensuring they are recycled after their second use along with a repository for battery EoL configurations


Development of national level not for profit battery collection schemes could be introduced to formalize the channels for EV battery collection and proper disposal

Responsible battery disposal should be attributed to vehicle OEMs having significant reach through their service centers which could act as collection centers

Key study findings Battery Reuse

Li-ion battery reuse – Overview

Battery reuse – Decision chart...

Major Applications...

Methods/ processes

Reconditioning: Replacement of dead cells or packs to reuse the assembly as an EV battery

Refurbishing: Opening the battery, replacing degraded parts, reassembling, etc.

Repurposing: Replacement of some cells or packs, but only used in stationary applications

Reusing: The individual cells are reused in a wide variety of applications

Reuse in EVs Grid scale energy storage Renewable Energy Backup power/UPS EV Charging

Li-ion battery reuse – Challenges

Challenges in Indian Battery Reuse Ecosystem

Туре	Details
Market Side Challenges	 Unproven performance, reliability, and safety of reused batteries Complexity of repurposing non-standardized battery packs Declining prices of new battery packs
Policy Side Challenges	 Inclination towards Battery recycling Presence of the unorganized players in the ecosystem

The key enablers and incentives to ensure growth of reuse ecosystem in the following countries were reviewed.

Key recommendations

The lack of guidelines and management rules for battery reuse needs to be addressed. The guidelines for battery reuse and associated standards should be drafted and included in individual state EV policies.

The growth of infrastructure for battery reuse and use of such applications which will increase the demand of repurposed batteries should be promoted by **rolling out appropriate subsidies**

OEMs must include onboard diagnostic to accurately track the capacity, and various characteristics to determine the viability of battery for reuse

R&D should be directed towards examining battery degradation, newer technologies of battery reuse, SOH estimation etc. in different processes for improved battery management

THANK YOU!

Disclaimer: While care has been taken in the collection, analysis, and compilation of the data, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH does not guarantee or warrant the accuracy, reliability, completeness, or currency of the information in this publication. The mention of specific companies or certain projects/products does not imply that they are endorsed or recommended by the members of this publication. The information provided is without warranty of any kind. GIZ and the authors accept no liability whatsoever to any third party for any loss or damage arising from any interpretation or use of the document or reliance on any views expressed herein