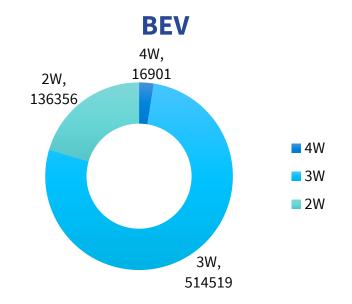
Transport and Climate Change Week

EV integration and gap analysis in Indian EV ecosystem

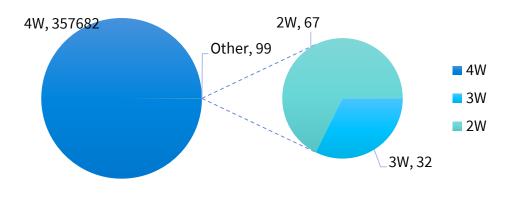
Zakir Rather IIT Bombay

Note: Some contents of this presentation are gleaned from different resources for which the copyright is retained by the respective owner/holder/creator/publisher.

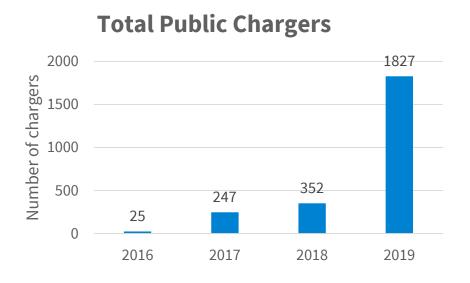


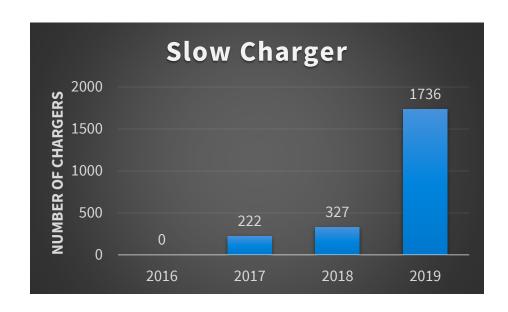
Contents

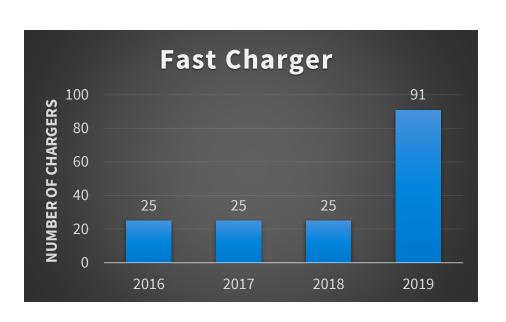
01	Indian EV Market
02	Indian EV Charging Infrastructure
03	Limitations in Central Policy Framework
04	Gaps in Policy
05	Challenges in Development of EV Charging Infrastructure
06	Challenges in Indian Distribution Network
07	Challenges to Battery Swapping
08	Bidirectional Power Flow: Opportunities & Challenges
09	Standards and Protocols for Communication: Challenges
10	Enablers for Ancillary Service and Demand Response from EVs
11	Renewable Energy Integration for EV Charging: Opportunities


Indian EV Market

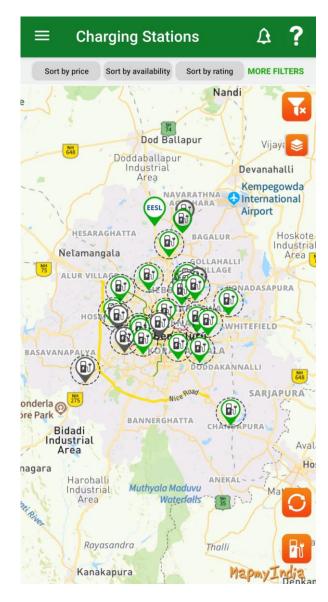
- 6,67,776 BEVs and 3,57,781 PHEVs are registered in India up to April 2021.
- Majority of vehicles are 2W or 3W


Growth of EV market in India 1.6 1.4 2W 3W 1.2 Others 0.4 0.2 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Year


PHEV


Vahan Sewa 3

Public EV charging Infrastructure in India



- Slow Charger < 22 kW Fast Charger > 22 kW
- □ Till March, 2021, approximately 1800 public chargers have been installed in India. (Source: SMEV)
- Considering the number of public EV chargers in India is around 1800, there are 9.39 EVs (4W) per charger in India.

Indian EV charging Infrastructure

- The charging infrastructure is still in its infancy.
- Under the FAME II scheme DHI has sanctioned 2636 chargers in 62 cities pan India. Further 241 charging stations have been later added.
- Different Govt. agencies and PSUs were awarded the tender to install chargers under the FAME II scheme.
- Expression of Interest also sent for installation of 1544 chargers on expressways and highways pan India.
- Different DISCOMs have also rolled out Charging Management platforms accessible to the public, to remotely monitor and reserve charging stations under its jurisdiction. Eg, BESCOM
- Few private parties also have started in the PCS business. Eg,
 Fortum, Magenta Power, PlugNGo

ElectreeFi mobile app

Gaps-EV charging infrastructure

- Lack of adequate support to private sector companies for charging infrastructure development
- Allocation of PCS not concentrated on high EV growth cities.
- Misalignment between subsidy in charging infrastructure and vehicle subsidy
- Lack of alignment between charging demand and allocation of charging infrastructure
- No subsidy for battery swapping
- Lack of support for grid infrastructure development to cater to EV load.

Challenges in Development of Charging Infrastructure in India (1/2)

- □ In India, the initial push towards public charging is seen to be primarily towards AC001 and DC001.
- Most 2W, 3W and 4W models (excepting Mahindra EVs) do not use AC001 (without adapters) and DC001
- Slow chargers would also need more time for charging, so not favorable as public chargers
- □Unorganized charging infrastructure (for 3W).

Source: BSES

Challenges in Development of Charging Infrastructure in India (2/2)

- ☐ The Indian EV market has not reached a critical mass for private player participation in EV charging infrastructure domain.
 - High cost of EV
 - High interest rate
 - High insurance cost
- Separate power infrastructure would be needed for fast charging stations and e-bus charging stations- a discouraging factor due to high investment
- ■Land availability for EV charging infrastructure
- Lack of instruments to lease land owned by Govt. offices/agencies to set up PCS
- ■Standardization of charging infrastructure for 2W and 3W

Challenges in Indian Distribution Network

- ☐ Highly loaded distribution feeders would warrant grid upgradation requirement to cater to EV charging needs, both private and public.
- ☐ The weak financial condition of state run DISCOMs may make it difficult for distribution system upgradation required for EV charging.
- ☐ The recovery of costs incurred for grid upgradation can be challenging
- Need for transparency in EV tariffs
- Need for time-based EV tariffs
- □ Lack of adequate regulations in EV charging integration to grid.
- □ Lack of smart grid infrastructure including smart meter penetration

Challenges for Battery Swapping in India

To increase uptake of e-2W and e-3W and push battery swapping Govt. of India has permitted the sale of Evs without batteries.

- Purchasing a battery separately may increase the cost, as the GST applicable for battery is higher at 18% compared to the EV's 5%
- The FAME II subsidies are based on battery size, so claiming subsidies for EVs without batteries would warrant clarification.
- In order to increase compatibility, the batteries would be needed to be standardized which would slow down innovation.
- There would need to be understanding among the different EV OEMs to have the same battery specifications for easy swapping.
- Ownership issues would also need to be regulated, on who owns the EV battery after being swapped at a swapping station.
- Accountability issues, as the safety of the EV would come into question if subpar batteries are used by the EV user.
- Warranty claims would be difficult.

Bidirectional Power Flow: Opportunities & Challenges

Services to TSO (V2G)

- Frequency Regulation
- Peak Power Shaving
- Spinning Reserves

Services to DSO (V2G)

- Congestion management
- Voltage support

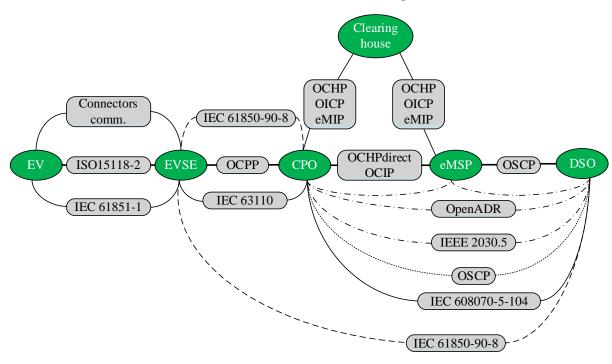

Behind-the-Meter Optimization (V2B)

- Can be utilized by private residences for load shifting
- Increasing self RE utilization

Back-up Power Supply (V2H & V2L)

- Emergency power to residence
- Emergency power to equipments

Grid support from EV


Currently in India there is a lack of

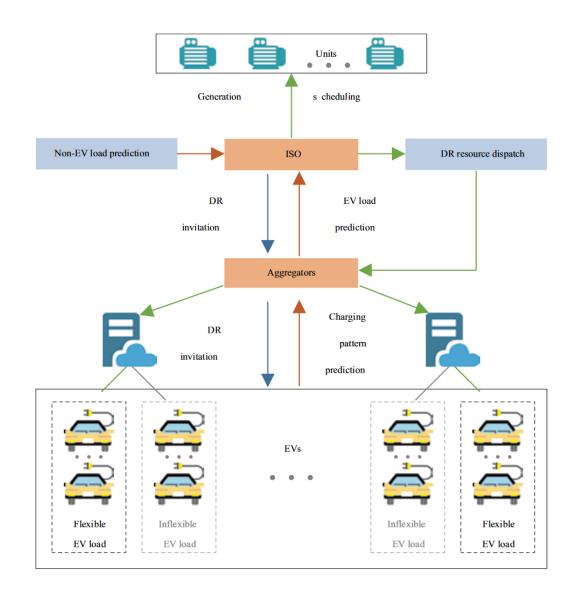
- EVs compatible with bidirectional charging
- EV chargers with bidirectional charging ability
- Adequate regulations
- Infrastructure including ITC to support V2X.
- Energy market products for EV participation

Standards and Protocols for Communication: Challenges

- OCPP has been mandated for communication between EVSE and CPO in India.
- No mention of communication between other entities.
- The lack of recommendation of communication would restrict availability of Smart Charging and eroaming.
- Communication between CPO, eMSP and DSO required to enable Smart Charging and Demand Response
- Inclusion of clearing house would be required for eroaming

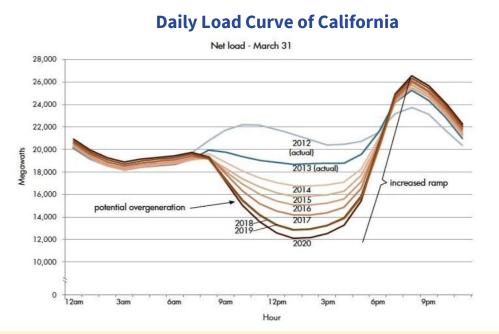
Communication standards between different stakeholders in EV ecosystem

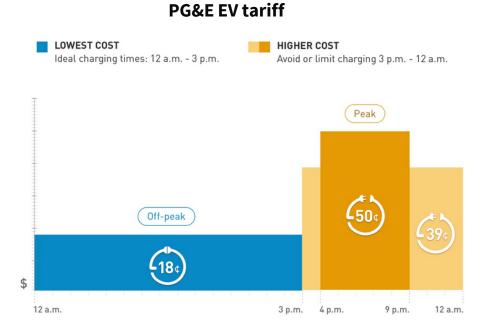
Source: Elaand.Nl


Enablers for Ancillary Service and Demand Response from EVs

Enablers for Ancillary Service and Demand

Response


- Regulations
- Aggregation of EVs
- Smart metering
- State-of-art forecasting
- Controllability and Observability


Time-based EV tariffs can act as passive demand response

Renewable Energy Integration for EV Charging: Opportunities

- In California to rectify for the duck curve, early noon periods have been demarcated as off-peak periods.
- In Netherlands, the balancing market is used to control charging based on RE generation.

- RE generation can be considered while designing time-based EV tariffs.
- Virtual net metering to integrate local PV generation with local community EV charging needs can be designed.
- Charging stations with integrated PV system has also been utilized to reduce the amount of electricity that needs to be purchased. BESCOM has designed a case study on this aspect.

Study Outcome – On the Way

July 2021

Fundamentals of Electric Vehicle Charging Technology and its Grid Integration

July 2021

• Global review of Electric Vehicle Charging Infrastructure and its Grid Integration

August 2021

• Status Quo of Electric Vehicle Charging Infrastructure and Grid Integration in India

August 2021

• Gap analysis and Recommendations for EV integration in India

Conclusion

- Need for more focus on policy and regulatory enablers for charging infrastructure in the overall EV ecosystem
- While there is relatively more focus on 2/3 W charging infrastructure, there is a need for adequate focus on 4W segment
- While battery swapping can be a supplementary station, the industry standards need to be harmonized and regulated in a balanced manner
- Public charging stations are currently predominantly slow chargers (>95%). Public charging need to be predominantly fast charging based.
- Need to address the issue of grid infrastructure upgradation through a sustainable financial model for accommodating fast charging/large slow charging hubs
- Smart charging needs to be planned in Indian grid. It will not only unlock numerous benefits from the underlying grid scale storage in EVs, but it will also avoid/minimize/defer grid upgradation and enable higher RE integration